Tri-Edge-Connectivity Augmentation for Planar Straight Line Graphs

نویسندگان

  • Marwan Al-Jubeh
  • Mashhood Ishaque
  • Kristóf Rédei
  • Diane L. Souvaine
  • Csaba D. Tóth
چکیده

It is shown that if a planar straight line graph (PSLG) with n vertices in general position in the plane can be augmented to a 3-edge-connected PSLG, then 2n−2 new edges are enough for the augmentation. This bound is tight: there are PSLGs with n ≥ 4 vertices such that any augmentation to a 3-edge-connected PSLG requires 2n− 2 new edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connectivity augmentation in planar straight line graphs∗

It is shown that every connected planar straight line graph with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar straight line graph with at most b(2n − 2)/3c new edges. It is also shown that every planar straight line tree with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar topological graph with at most bn/2c new edges...

متن کامل

Connectivity augmentation in plane straight line graphs

It is shown that every connected planar straight line graph with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar straight line graph with at most b(2n − 2)/3c new edges. It is also shown that every planar straight line tree with n ≥ 3 vertices has an embedding preserving augmentation to a 2-edge connected planar topological graph by adding at most bn/2c edge...

متن کامل

Minimum Weight Connectivity Augmentation for Planar Straight-Line Graphs

Connectivity augmentation is a classical problem in combinatorial optimization (see [4, 5]). Given a graph G = (V,E) and a parameter τ ∈ N, add a set of new edges E+ such that the augmented graph G′ = (V,E ∪ E+) is τ -connected (resp., τ -edge-connected). Over planar straightline graphs (PSLGs), it is NP-complete to find the minimum number of edges for τ -connectivity or τ -edge-connectivity au...

متن کامل

Bounded Length, 2-Edge Augmentation of Geometric Planar Graphs

Algorithms for the construction of spanning planar subgraphs of Unit Disk Graphs (UDGs) do not ensure connectivity of the resulting graph under single edge deletion. To overcome this deficiency, in this paper we address the problem of augmenting the edge set of planar geometric graphs with straight line edges of bounded length so that the resulting graph is planar and 2-edge connected. We give ...

متن کامل

Constrained tri-connected planar straight line graphs∗

It is known that for any set V of n ≥ 4 points in the plane, not in convex position, there is a 3-connected planar straight line graph G = (V, E) with at most 2n− 2 edges, and this bound is the best possible. We show that the upper bound |E| ≤ 2n continues to hold if G is constrained to contain a given graph G0 = (V,E0), which is either a 1-factor (i.e., disjoint line segments) or a 2-factor (i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009